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 35 

Supplementary Fig. 1. Emission amounts (a) and relative contributions (b) of 36 

volatilization NH3 (v-NH3) in emission inventories of East Asia, North America, 37 
and Europe. Mean annual values of available data in emission inventories are shown, 38 
and data sources are detailed in Supplementary Table 1.  39 
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 40 

Supplementary Fig. 2. δ15N of five major NH3 sources (a) and emission 41 
inventories weighted v-NH3 and c-NH3 sources (b). v-NH3 represents volatilization 42 

NH3; c-NH3 represents combustion-related NH3; fa-NH3, wm-NH3, cc-NH3, ve-NH3, 43 
and bb-NH3 represent NH3 emissions from fertilizer application, waste materials, coal 44 
combustion, vehicle exhausts, and biomass burning, respectively. In sub-figure a, 45 

each box encompasses the 25th−75th percentiles, whiskers and the red line in each box 46 

are the SD and mean values, respectively. In sub-figure b, emission inventories 47 
weighted mean±SD values of v-NH3 and c-NH3 sources are shown. Calculations were 48 
detailed in the Methods. Values with different letters (a, b, c, and d) differ 49 

significantly at p<0.05. The δ15N values based on the passive samplers have been 50 
calibrated by adding 15‰1–3. The white-filled circles are mean δ15N values of NH3 51 

emissions from specific sources measured in different studies. The error bars and the 52 
numbers in the circles are SD values and data sources. 53 
1: Fertilizer in the field, passive sampler (denoted as P)4; 54 

2: Urea-ammonia-nitrate fertilizer in the field, P5; 55 
3: Urea in the field, active sampler (denoted as A)6; 56 

4: Urea in the lab, P7; 57 
5: Fertilizer in the green land, A8; 58 

6: Human excreta, P9; 59 
7: Pig wastes, P9; 60 
8: Solid wastes, P9; 61 
9: Wastewater, P9; 62 
10: Cow wastes, P5; 63 

11: Cow wastes, A10; 64 
12: Chicken wastes, A11; 65 
13: Sheep wastes, A11; 66 
14: Dairy cow wastes, A12; 67 
15: Cow wastes, P13; 68 

16: Cow wastes, A14; 69 

17: Human excreta, A8; 70 
18: Cow wastes, A8; 71 
19: Chicken wastes, A8; 72 
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20: Human excreta, A15; 73 
21: Pig farm and dairy farm, A6; 74 
22: Brown coal combustion, A10; 75 
23: Hard coal combustion, A10; 76 

24: Household coal combustion, A16; 77 
25: Vehicle exhaust sampled in a tunnel, P5; 78 
26: Vehicle exhaust sampled in a tunnel, A17; 79 
27: Vehicle exhaust sampled at a roadside, A3; 80 
28: Vehicle exhaust sampled in a tunnel, A3; 81 

29: Vehicle exhaust sampled on the road, A3; 82 
30: Biomass burning estimated by aerosol NH4

+ in winter at Yurihonjo, Japan18; 83 

31: Biomass burning estimated by aerosol NH4
+ in autumn at Nanchang, China19.  84 
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 85 

Supplementary Fig. 3. Relative frequency histograms of δ15Na-NH3, δ15Nw-NH4+, 86 
and δ15Np-NH4+. Replicate measurements (n) at all sites (Fig. 2) were used. The δ15Na-87 

NH3 data sources are listed in Supplementary Text 1. The δ15Nw-NH4+ data sources are 88 
listed in Supplementary Text 2. The δ15Np-NH4+ data sources are listed in 89 
Supplementary Text 3.  90 
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 91 

Supplementary Fig. 4. δ15N of a-NH3, w-NH4
+, and p-NH4

+ at urban and non-92 

urban sites (a) and agricultural and non-agricultural sites (b). Circles around each 93 

box show mean values of replicate measurements at each site (6−36 and 2−20 for a-94 

NH3 at urban and non-urban sites, respectively; 1−61 and 1−156 for w-NH4
+ at urban 95 

and non-urban sites, respectively; 1−169 and 1−84 for p-NH4
+ at urban and non-urban 96 

sites, respectively). In sub-figure b, non-urban sites are further divided into 97 

agricultural and non-agricultural sites (2−20 and 7−12 for a-NH3 at agricultural and 98 

non-agricultural sites, respectively; 1−156 and 1−137 for w-NH4
+ at agricultural and 99 

non-agricultural sites, respectively; 1−77 and 5−84 for p-NH4
+ at agricultural and 100 

non-agricultural sites, respectively). δ15Na-NH3 based on the passive samplers has been 101 

calibrated by adding 15‰1–3. Each box encompasses the 25th−75th percentiles, 102 
whiskers and the red line in each box are the SD and mean values, respectively. The 103 

numbers below the boxes are those of observation sites. n.s. indicates no significant 104 
differences in δ15N between urban and non-urban or agricultural and non-agricultural 105 
sites at p<0.05.  106 
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 107 

Supplementary Fig. 5. Correlation of 15∆a-NH3, 15∆p-NH4+, and 15∆w-NH4+ with fp-NH4+ 108 

(i.e., Cp-NH4+/(Ca-NH3+Cp-NH4+)) in the atmosphere. Simultaneous observation data of 109 
seasonal mean Ca-NH3, Cp-NH4+, and corresponding 15∆a-NH3, 

15∆p-NH4+, and 15∆w-NH4+ 110 
(n=19 for each) at six sites (Supplementary Table 5) are used. The shade is the 95% 111 
confidence interval. Calculations of 15∆a-NH3, 

15∆p-NH4+, and 15∆w-NH4+ are detailed in 112 
Methods.  113 
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 114 

Supplementary Fig. 6. Emission amounts of NOx and SO2 (a, b, and c) and 115 
correlation between fp-NH4+ and the emission of NOx and SO2 in East Asia (d), 116 

North America (e), and Europe (f). Data on NOx and SO2 emissions were 117 

downloaded from4. The annual mean fp-NH4+ values in East Asia during 1993–2018, 118 

North America during 2004–2018, and Europe during 1990–2017 (detailed in 119 
Supplementary Fig. 7) were used. East Asia includes China, Japan, and Korea. North 120 

America includes both USA and Canada. Europe includes Austria, Belgium, Denmark, 121 
Faroe Islands, Finland, France, Germany, Gibraltar, Greece, Greenland, Iceland, Italy, 122 
Ireland, Luxembourg, Norway, Netherlands, Portugal, Spain, Sweden, Switzerland, 123 

and United Kingdom.  124 
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 125 

Supplementary Fig. 7. Time series of fp-NH4+ (i.e., Cp-NH4+/(Ca-NH3+Cp-NH4+)) in the 126 

atmosphere. Grey circles are site-based mean values of replicate measurements 127 
(n=1–55 in East Asia, n=1–59 in North America, n=1–68 in Europe) in each region. 128 
The red-filled circle is the mean value of site-based observation values (Gray circles) 129 
available for the corresponding year. The data sources (references) in the figure are 130 
listed in Supplementary Text 4.  131 
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 132 

Supplementary Fig. 8. Annual mean 15∆a-NH3, 15∆w-NH4+, and 15∆p-NH4+ in each 133 
region. Calculations are detailed in Methods.  134 



11 

 135 

Supplementary Fig. 9. Differences between the paired δ15Ni-NH3(a-NH3) and δ15Ni-136 

NH3(w-NH4+) (δ15Ni-NH3(w-NH4+) - δ15Ni-NH3(a-NH3)), δ15Ni-NH3(a-NH3) and δ15Ni-NH3(p-NH4+) 137 

(δ15Ni-NH3(p-NH4+) - δ15Ni-NH3(a-NH3)), δ15Ni-NH3(p-NH4+) and δ15Ni-NH3(w-NH4+) (δ15Ni-NH3(w-138 

NH4+) - δ15Ni-NH3(p-NH4+)). Error bars represent standard error. Numbers below the bars 139 

are observation sites (detailed in Supplementary Table 4). Calculations were based on 140 
simultaneous observations on either δ15Na-NH3 and δ15Np-NH4+, δ15Na-NH3 and δ15Nw-141 

NH4+, δ15Np-NH4+ and δ15Nw-NH4+ (detailed in Methods).  142 
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 143 

Supplementary Fig. 10. Fc-NH3 values in East Asia, North America, and Europe. 144 
Circles and error bars around each box show mean±SD of Fc-NH3 at each site. Each 145 

box encompasses the 25th−75th percentiles, whiskers and the red line in each box are 146 
SD and mean values, respectively. The numbers below the boxes represent the 147 

numbers of observation sites in each region. Different letters (a and b) above the 148 
boxes indicate a significant difference (p<0.05) among the three regions. Calculations 149 

were detailed in Methods.  150 
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 151 

Supplementary Fig. 11. (a) Mean Fc-NH3 of urban, non-urban, agricultural, and 152 
non-agricultural sites, and (b) variations of Fc-NH3 at non-urban sites with the 153 

corresponding distances from the edge of the nearest urban area (Dnon-urban). 154 

Error bars represent SD. In sub-figure a, each box encompasses the 25th−75th 155 
percentiles, whiskers and the red line in each box are SD and mean values, 156 

respectively. Numbers below the boxes are the numbers of observation sites. n.s.: no 157 
significance. In sub-figure b, the Dnon-urban values were measured by using the 158 
coordinate information and Google Earth (https://earth.google.com).  159 

https://earth.google.com/
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 160 

Supplementary Fig. 12. Relative contributions of c-NH3 (a) and the ratio of Fv-161 

NH3 to Fc-NH3 (b) in East Asia, North America, and Europe. Error bars represent SD. 162 
Calculations were detailed in the Methods.  163 
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 164 

Supplementary Fig. 13. Total amounts of NH3 emissions and NHx deposition in 165 

China, the United States, and Europe. Error bars represent SD. Data on total NH3 166 
emissions in inventories were cited from Supplementary Table 1. Calculations of total 167 
NH3 emission amounts were detailed in the Methods. Data of the NHx deposition (i.e., 168 

the sum of a-NH3, p-NH4
+, and w-NH4

+ deposition) were cited from refs. 21–26.  169 



16 

 170 

Supplementary Fig. 14. Amounts of c-NH3 emission (a) and the ratio of Av-NH3 to 171 
Ac-NH3 (b) in East Asia, North America, and Europe. Error bars represent SD. The 172 

calculations and data sources were detailed in the Methods.  173 
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 174 

Supplementary Fig. 15. The spatial difference in amounts of energy consumption 175 
(a), fertilizer consumption and animal manure (b), and the ratio of energy 176 
consumption to fertilizer consumption and animal manure (c) in East Asia 177 

during 2001–2017, North America, Europe, and the Globe during 1971–2017. 178 
Error bars represent SD. East Asia includes China, Japan, and Korea. North America 179 

includes both USA and Canada. Europe includes Austria, Belgium, Bulgaria, Croatia, 180 
Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, 181 

Ireland, Italy, Latvia, Lithuania, and Luxembourg. Data on energy consumption were 182 
downloaded from27. Data on fertilizer consumption and animal manure were 183 
downloaded from28.  184 
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 185 

Supplementary Fig. 16. Time series of fertilizer consumption and animal manure 186 
in East Asia, North America, and Europe. East Asia includes China, Japan, and 187 

Korea. North America includes both USA and Canada. Europe includes Austria, 188 
Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, 189 
Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, 190 

Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and 191 
United Kingdom. Data were downloaded from28,29. The amount excreted in the 192 

manure of Europe excludes Malta, Netherlands, Poland, Portugal, Romania, Slovakia, 193 
Slovenia, Spain, Sweden, and the United Kingdom due to the lack of statistical data. 194 
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Supplementary Table 1. Sources of volatilization NH3 (v-NH3) and combustion-related NH3 (c-NH3) in emission inventories. 195 

Regions / 

Countries 
v-NH3 sources c-NH3 sources Refs. 

East Asia, 

North 

America, 

Europe 

Manure management, manure in pasture 

or range or paddock, direct soil 

emissions, other indirect soil emissions, 

wastewater handling, and other waste 

handling 

Public electricity and heat production, manufacturing industries and 

construction, other energy industries, road transportation, rail 

transportation, inland navigation, other transportation, residential and 

other sectors, fugitive emissions from solid fuels, production of other 

minerals, production of chemicals, agricultural waste burning, waste 

incineration, and other energy industries 

20 

East Asia Non-combustion sources 

Primary coal, secondary coal, natural gas, other gas fuels, light oil 

fuels, diesel oil, heavy oil fuels, biofuel, other fuels, and cement kilns 

(only for Japan) combustion 

30 

East Asia Agriculture Power, industry, transportation, residential 31 

East Asia 

Fertilizer application, manure 

management, human perspiration and 

respiration, and latrines 

Combustion 32 

Europe 
Manure management and agriculture 

other 

Public power, industry combustion, other station combustion, waste, 

public electricity and heat production, industry combustion, other 

stationary combustion, road transport, waste combustion, manure 

management 

33 

Europe Agriculture 

Energy supply, extractive industry, manufacturing and extractive 

industry, residential, commercial and institutional, transport, waste, 

and other 

34 

Europe Manure, fertilizer, and oceanic sources Biofuel, Transportation, industry, energy, and open-fire combustion 35 

USA Miscellaneous 

Fuel combustion electric generating utility, fuel combustion industrial 

and other, chemical and allied product mfg, metals processing, 

petroleum & related industries, other industrial processes, solvent 

utilization, storage and transport, waste disposal and recycling, 

highway vehicles, and off-highway vehicles 

36 
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Regions / 

Countries 
v-NH3 sources c-NH3 sources Refs. 

Canada 
Animal production and crop production 

for Canada 

Ore and mineral industries, oil and gas industry, electric power 

generation utilities, manufacturing, transportation and mobile 

equipment, agriculture-fuel use, commercial or residential or 

institutional, incineration and waste, paints and solvents, dust and 

fires 

37 

China 

Synthetic fertilizer, agricultural soil, N-

fixing crop, compost, livestock, human 

excrement, and waste disposal 

Biomass burning, chemical industry, traffic, and NH3 escape 38 

China 

Synthetic fertilizer, agricultural soil, N-

fixing crop, compost, livestock, human 

excrement, and waste disposal 

Biomass burning, chemical industry, traffic, and NH3 escape 39 

China 

Cropland, livestock, grassland, 

aquaculture, waste disposal, humans, 

urban green land, and pets 

Biomass burning, fuel combustion, chemical industry, and traffic 

sources 
40 

China Agriculture Power, industry, residential, transportation, solvent use 41 

China 
Fertilizer application and livestock 

wastes 
Human and others 42 

Note: East Asia includes China, Japan, and Korea. North America includes USA and Canada. Europe includes Austria, Belgium, 196 

Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, 197 

Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and United Kingdom.  198 
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Supplementary Table 2. Direct measurements on c-NH3 and their influences on ambient NH3. n.a. refers to ‘not available’. 199 

Methods Scales Sources Data Notes Refs. 

Laboratory 

simulations 
Laboratory 

Biomass 

burning 
19.3% 

Fraction of NH3 in total reactive N emitted during 

biomass burning. NH3 is the most important active 

nitrogen emission after nitric oxide during biomass 

burning. 

43 

Laboratory 

simulations 
Laboratory 

Vehicle 

exhausts 

10 and 21 

mg kg-1 

Emission factors of diesel light-duty vehicles equipped 

with selective catalytic reduction at 23℃ and -7℃, 

respectively, which were as high as those of gasoline 

light-duty vehicles and have long been overlooked by 

emission inventories. Diesel vehicles accounted for 52% 

of the total vehicle in Europe in 2015. 

44, 

45 

Ground 

observations 

Site 

(Colorado, 

USA) 

Biomass 

burning 
20 times 

Multiple NH3 concentrations during wildfire smoke-

impacted periods relative to the non-fire period 
46 

Ground 

observations 

Site (South 

Korea) 

Fossil-fuel 

combustion 

0.21–0.99 

ppm 

NH3 concentrations emissions from bituminous coal 

power plants. NH3 emission factor for bituminous coal 

power plants is 0.0029 kg NH3 ton-1, which is ten times 

that of US EPA (0.00028 kg NH3 ton-1) 

47 

Ground 

observations 

Site 

(Shanghai, 

China) 

Vehicle 

exhausts 
3 times 

Multiple NH3 concentrations in the tunnel relative to that 

at a nearby urban site, indicate strong vehicle NH3 

emissions in the tunnel 

48 

Ground 

observations 

Site 

(California, 

USA) 

Vehicle 

exhausts 
10 times 

Multiple NH3 concentrations in the tunnel exit relative to 

that in the tunnel entrance 
49 

Ground 

observations 

Site 

(Shanghai, 

China) 

Vehicle 

exhausts 

5 and 11 

times 

Multiple NH3 concentrations in the tunnel exit relative to 

that in the tunnel entrance and the ambient air, 

respectively 

50 
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Methods Scales Sources Data Notes Refs. 

Ground 

observations 

Site (Eureka 

& Toronto, 

Canada) 

Biomass 

burning 
2 times 

The observed NH3 column concentration at Eureka 

doubled during the period of fire-affected from the 2014 

Northwest Territories fires 

51 

Ground 

observations 

Site (Rome, 

Italy) 

Vehicle 

exhausts 
5 times 

Multiple NH3 concentration at the traffic sites relative to 

that at urban background site, there is a strong correlation 

between NH3 and CO concentration 

52 

Ground 

observations 

Site 

(Shanghai, 

China) 

c-NH3 
2 and 4 

times 

Multiple hourlies averaged NH3 concentrations at the 

industrial site (19.6±8.2 ppb) in Shanghai relative to that 

at nearby rural (10.4±5.0 ppb) and urban (5.4±3.3 ppb) 

sites, respectively, during the same period. Remarkable 

high-frequency NH3 variations were measured at the 

industrial site, with a concentration peak of 279.3 ppb and 

a highest hourly average of 84.9 ppb, indicating 

instantaneous nearby industrial emission peaks. 

53 

Ground 

observations 
Site (China) Miscellaneous 2−3 times 

Multiple NH3 concentrations at urban sites relative to that 

at mountainous/forest/grassland/waterbody sites 
54 

Ground 

observations 

Site 

(Worldwide) 
Miscellaneous 2 times 

Multiple NH4
+ deposition in urban areas relative to that in 

nearby rural areas 
55 

Ground 

observations 

Site (New 

Jersey and 

California, 

USA) 

Vehicle 

exhausts 

0.029±0.005 

ppbv/ppbv 

The mean values of the on-road NH3:CO emission ratio, 

which was substantially higher than that in the National 

Emission Inventory (0.008-0.018 ppbv/ppbv) 

56 

Ground 

observations 

City (Zurich, 

Tartu, Tallinn, 

Europe) 

Vehicle 

exhausts 
37%–94% 

The enhancement proportion of NH3 concentration in the 

traffic areas in Zurich, Tartu, and Tallinn, three Europe 

cities, over the average background concentrations. 

57 
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Methods Scales Sources Data Notes Refs. 

Aircraft 

observations 

Regional 

(USA) 

Biomass 

burning 
66% 

Fraction of NH3 in total reactive N emitted from wildfires. 

NHx emission factors in temperate forest fires in the US 

were about 2.5 times higher than the best estimated 

temperate forest emission factor used in models 

58 

Satellite 

observation 
Global Point sources 4.6 Tg N yr-1 

Total NH3 emission, which is about ∼2.5 times more than 

the current amount in the Hemispheric Transport 

Atmospheric Pollution version 2 (HTAPv2) emission 

inventory (2.1 Tg yr-1) 

59 

Satellite 

observations & 

oversampling 

techniques 

Global c-NH3 158 hotspots 

A high-resolution map of atmospheric NH3 showed the 

hotspots of c-NH3 emissions, including burning coal 

mines and coal-related industries: coal mining, thermal 

power plants, coke production, and other chemical coal 

industries 

60 

Satellite 

observation & 

wind-adjusted 

super-

resolution 

technique 

Global c-NH3 >500 

Amount of NH3 point sources, including 266 industrial 

NH3 hotspots and 13 urban NH3 hotspots in African 

megacities 

61 

Satellite 

observation 
Global 

Biomass 

burning 
n.a. 

Biomass burning controls the seasonal surface NH3 

concentrations in the Southern Hemisphere with frequent 

fires, such as in Africa north of the Equator, Africa south 

of the Equator, and central South America, and also affect 

the temporal variation of surface NH3 concentrations in 

high NH3 concentration regions, such as China, USA, and 

Europe 

62 
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Methods Scales Sources Data Notes Refs. 

Satellite 

observation 

Regional 

(Alberta, 

Canada) 

Biomass 

burning 
30 Gg 

The satellite-measured NH3 emissions during the Horse 

River fire, accounted for 20% of total anthropogenic 

emissions in Alberta, Canada 

63 

Satellite 

observation 
Global 

Biomass 

burning 
n.a. 

Some high-latitude regions during peak forest fire activity 

often have NH3 concentrations approaching those in 

agricultural hotspots 

25 

Emission 

inventory 

City 

(Shanghai, 

China) 

Vehicle 

exhausts 
12% 

Fraction of vehicle NH3 emissions in total NH3 emissions 

in Shanghai, China 
50 

Emission 

inventory 

Regional 

(Pearl River 

Delta, China) 

Vehicle 

exhausts 
8.1%–19% 

Fraction of on-road vehicle NH3 emissions in total NH3 

emissions in the Pearl River Delta of China, which 

increased from 8.1% in 2006 to 18.8% in 2012 due to the 

increase in vehicle population 

64 

Emission 

inventory 
National (UK) 

Vehicle 

exhausts 
17 and 2.6 

Factors of underestimation vehicle NH3 emissions in 

urban and national scales compared with the 2018 UK 

National Atmospheric Emissions Inventory, respectively 

65 

Emission 

inventory 

National 

(USA) 

Vehicle 

exhausts 
7% 

Fraction of vehicle NH3 emissions in total NH3 emissions 

in the USA using the error-weighted average emission 

ratios of NH3:CO2 

66 

Emission 

inventory 
Global Transportation 1.3 Tg N 

NH3 emissions from transportation in 2010 using updated 

emission factors, which was 3.2 times that of EDGAR 
67 

Emission 

inventory 

National 

(China) 

Household 

coal and 

biomass 

combustion 

0.5 Tg N 

NH3 emission from household coal and biomass 

combustion in China in 2006, using the average NH3 

emission factors for burning coal (1.01 mg g-1), biomass 

briquette (0.95 mg g-1), and biomass (0.96 mg g-1) in a 

traditional heating stove as well as the consumption of 

residential coal and biomass 

68 
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Methods Scales Sources Data Notes Refs. 

Emission 

inventory 
Global 

Biomass 

burning 
5.9 Tg N yr-1 

NH3 emissions from biomass burning, which account for 

11% of global total NH3 emissions 
69 

Emission 

inventory 
Global 

Biomass 

burning 
8.2 Tg N yr-1 

NH3 emissions from biomass burning based on the 

updated compilation of emission factors for 121 biomass 

species and published global activity data 

70 

Coupled 

human-

environment N 

cycle model 

National 

(China) 
c-NH3 

>100 kg N 

ha-1 yr-1 

The emission intensities based on coupled human-

environment N cycle model are higher than that of v-NH3 

sources (0–80 kg N ha-1 yr-1) 

71 

 200 
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Supplementary Table 3. Values of kinetic and equilibrium isotope effects (εk and εeq, respectively) in the gaseous NH3 201 

conversion to particulate NH4
+ (p-NH4

+) in the atmosphere. n.a. refers to ‘not available’. 202 

Isotope effects Mean±SD values (‰) Methods Refs. 

Kinetic isotope 

fractionation (εk) 

-28.0±n.a. 
Calculations based on constant diffusion rates of 15NH3 relative to 14NH3 

in the nonturbulent environment 
72 

-17.7±n.a. 
Calculations based on different diffusion rates of 15NH3 relative to 14NH3 

in the turbulent environment 
1,3 

-15.4±3.5 
Determined by field δ15N differences between actively and passively 

sampled NH3 in the summer 
1 

-15.5±1.0 
Determined by field δ15N differences between actively and passively 

sampled NH3 in the winter 
3 

-20.0±n.a. 
Determined by δ15N differences between NH3 and p-NH4

+ in controlling 

experiments 
73 

Equilibrium isotope 

fractionation (εeq) 

31.0±4.0 Theoretical calculations at 20℃ 74 

35.0±n.a. Theoretical calculations at 25℃ 75 

33.0±n.a. Controlling experiments in a closed chamber 73 

31.6±2.0 
Controlling experiments in a dynamic chamber with a turnover rate of 0.9 

times per day 
76 

24.0±3.0 
Controlling experiments in a dynamic chamber with a turnover rate of 6.8 

times per day 
76 

 203 
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Supplementary Table 4. Simultaneously site-based δ15Na-NH3, δ15Np-NH4+, and δ15Nw-NH4+ used for calculating differences 204 

between the paired δ15Ni-NH3(a-NH3), δ15Ni-NH3(p-NH4+), or δ15Ni-NH3(w-NH4+). n represents replicate measurements at each site. n.a. refers 205 
to ‘not available’. a the δ15Na-NH3 values based on the passive samplers have been corrected by adding 15‰1–3. 206 

Site, Country Longitude Latitude δ15Na-NH3 (‰) δ15Np-NH4+ (‰) δ15Nw-NH4+ (‰) Refs. 

Suzhou, China 120°35′ E 31°17′ N -16.7±3.3 (n=12) 15.8±3.8 (n=12) 0.5±2.8 (n=12) 6 

Changshu, China 120°42′ E 31°21′ N -18.3±6.0 (n=12) 15.1±7.3 (n=12) -4.9±3.1 (n=12) 6 

Yixing, China 119°54′ E 31°17′ N -17.5±6.0 (n=12) 14.3±9.7 (n=12) 0.5±2.8 (n=12) 6 

Beijing, China 116°22′ E 39°58′ N -15.9±5.8a (n=16) 5.5±5.2 (n=26) 0.7±4.2 (n=28) 77–79 

Colorado, USA 105°16′ W 39°58′ N -10.0±2.6 (n=6) 5.6±5.5 (n=13) -1.4±3.5 (n=11) 80,81 

Providence, USA 71°24′ W 41°49′ N -16.9±3.8 (n=12) 4.3±4.7 (n=14) n.a. 74 

Yurihonjo, Japan 140°24′ E 39°12′ N -16.9±8.8 (n=20) 16.1±6.6 (n=77) n.a. 13 

Niigata, Japan 138°51' E 37°48' N -8.3±3.6 (n=19) 22.1±8.3 (n=19) n.a. 82 
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Supplementary Table 5. Simultaneously seasonal observed Ca-NH3, Cp-NH4+, δ15Na-NH3, δ15Np-NH4+, and δ15Nw-NH4+ used for 207 

calculating δ15Ni-NH3, 15∆a-NH3, 15∆p-NH4+, and 15∆w-NH4+ values (Eqs. (7–11)). n represents replicate measurements at each site. n.a. 208 
refers to ‘not available’. a the δ15Na-NH3 based on the passive samplers has been corrected by adding 15‰1–3. 209 

Site, Country Longitude Latitude Season 
δ15Na-NH3 

(‰) 

δ15Np-NH4+ 

(‰) 

δ15Nw-NH4+ 

(‰) 

Ca-NH3 

(μg N m-3) 

Cp-NH4+ 

(μg N m-3) 
Refs. 

Suzhou, China 120°35′ E 31°17′ N Spring 
-16.3±9.3 

(n=3) 

29.2±4.5 

(n=3) 

1.6±0.6 

(n=3) 

11.5±5.5 

(n=3) 

4.2±0.7 

(n=3) 
6 

Suzhou, China 120°35′ E 31°17′ N Summer 
-22.7±0.4 

(n=3) 

9.7±4.8 

(n=3) 

-0.8±1.9 

(n=3) 

18.0±4.1 

(n=3) 

5.8±0.8 

(n=3) 
6 

Suzhou, China 120°35′ E 31°17′ N Autumn 
-18.3±4.7 

(n=3) 

16.1±11.2 

(n=3) 

-2.2±2.6 

(n=3) 

11.6±5.7 

(n=3) 

2.0±1.4 

(n=3) 
6 

Suzhou, China 120°35′ E 31°17′ N Winter 
-9.6±4.1 

(n=3) 

8.2±9.9 

(n=3) 

3.4±2.4 

(n=3) 

4.5±1.6 

(n=3) 

9.0±2.5 

(n=3) 
6 

Changshu, China 120°42′ E 31°21′ N Spring 
-15.6±8.4 

(n=3) 

23.8±4.3 

(n=3) 

-2.9±1.6 

(n=3) 

11.4±6.1 

(n=3) 

6.2±1.3 

(n=3) 
6 

Changshu, China 120°42′ E 31°21′ N Summer 
-21.6±0.9 

(n=3) 

12.1±2.5 

(n=3) 

-7.4±0.6 

(n=3) 

19.8±4.5 

(n=3) 

5.9±2.2 

(n=3) 
6 

Changshu, China 120°42′ E 31°21′ N Autumn 
-19.6±3.2 

(n=3) 

16.3±4.3 

(n=3) 

-8.0±1.4 

(n=3) 

14.3±3.7 

(n=3) 

4.6±2.6 

(n=3) 
61 

Changshu, China 120°42′ E 31°21′ N Winter 
-16.2±8.8 

(n=3) 

8.3±7.4 

(n=3) 

-1.5±0.5 

(n=3) 

5.8±2.7 

(n=3) 

8.9±9.2 

(n=3) 
6 

Yixing, China 119°54′ E 31°17′ N Spring 
-17.2±7.3 

(n=3) 

27.1±4.1 

(n=3) 

1.6±0.6 

(n=3) 

13.0±7.1 

(n=3) 

3.4±1.0 

(n=3) 
6 

Yixing, China 119°54′ E 31°17′ N Summer 
-20.9±3.0 

(n=3) 

14.6±7.9 

(n=3) 

-0.9±1.9 

(n=3) 

18.0±4.2 

(n=3) 

8.6±5.9 

(n=3) 
6 
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Site, Country Longitude Latitude Season 
δ15Na-NH3 

(‰) 

δ15Np-NH4+ 

(‰) 

δ15Nw-NH4+ 

(‰) 

Ca-NH3 

(μg N m-3) 

Cp-NH4+ 

(μg N m-3) 
Refs. 

Yixing, China 119°54′ E 31°17′ N Autumn 
-18.8±2.8 

(n=3) 

9.0±7.3 

(n=3) 

-2.2±2.5 

(n=3) 

13.6±4.2 

(n=3) 

4.6±4.1 

(n=3) 
6 

Yixing, China 119°54′ E 31°17′ N Winter 
-12.9±8.6 

(n=3) 

6.4±2.6 

(n=3) 

3.3±2.3 

(n=3) 

5.5±0.7 

(n=3) 

10.1±7.3 

(n=3) 
6 

Beijing, China 116°22′ E 39°58′ N Summer 
-13.7±4.2a 

(n=12) 

6.0±5.5 

(n=17) 

1.3±4.0 

(n=21) 

15.5±n.a. 

(n=1) 

1.2±1.1 

(n=17) 
77–79 

Beijing, China 116°22′ E 39°58′ N Autumn 
-20.6±7.0a 

(n=8) 

4.6±4.7 

(n=9) 

2.2±n.a. 

(n=1) 

10.6±n.a. 

(n=1) 

0.9±0.8 

(n=9) 
77–79 

Yurihonjo, Japan 140°24′ E 39°12′ N Spring 
-20.8±8.4 

(n=5) 

15.3±5.1 

(n=9) 

-6.1±2.5 

(n=4) 

4.4±2.5 

(n=5) 

0.4±0.3 

(n=9) 
13,83 

Yurihonjo, Japan 140°24′ E 39°12′ N Summer 
-16.7±6.5 

(n=5) 

18.0±7.0 

(n=9) 

-5.0±1.8 

(n=6) 

4.5±3.3 

(n=5) 

0.3±0.3 

(n=9) 
13,83 

Yurihonjo, Japan 140°24′ E 39°12′ N Autumn 
-8.1±4.5 

(n=5) 

18.8±5.3 

(n=7) 

-2.5±0.7 

(n=6) 

1.2±0.4 

(n=5) 

0.2±0.2 

(n=7) 
13,83 

Yurihonjo, Japan 140°24′ E 39°12′ N Winter 
-23.9±6.7 

(n=5) 

11.7±7.0 

(n=8) 

-4.5±0.9 

(n=3) 

1.5±1.2 

(n=5) 

0.3±0.2 

(n=8) 
13,83 

Colorado, USA 105°16′ W 39°58′ N Summer 
-10.0±2.6 

(n=6) 

5.6±5.5 

(n=13) 

-1.4±3.5 

(n=11) 

0.2±n.a. 

(n=1) 

0.2±0.2 

(n=5) 
80,81 
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